203 research outputs found

    The exoskeletons are here

    Get PDF
    It is a fantastic time for the field of robotic exoskeletons. Recent advances in actuators, sensors, materials, batteries, and computer processors have given new hope to creating the exoskeletons of yesteryear's science fiction. While the most common goal of an exoskeleton is to provide superhuman strength or endurance, scientists and engineers around the world are building exoskeletons with a wide range of diverse purposes. Exoskeletons can help patients with neurological disabilities improve their motor performance by providing task specific practice. Exoskeletons can help physiologists better understand how the human body works by providing a novel experimental perturbation. Exoskeletons can even help power mobile phones, music players, and other portable electronic devices by siphoning mechanical work performed during human locomotion. This special thematic series on robotic lower limb exoskeletons and orthoses includes eight papers presenting novel contributions to the field. The collective message of the papers is that robotic exoskeletons will contribute in many ways to the future benefit of humankind, and that future is not that distant

    Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Physiological Society via the DOI in this recordInspired by elastic energy storage and return in tendons of human leg muscle-tendon units (MTU), exoskeletons often place a spring in parallel with an MTU to assist the MTU. However, this might perturb the normally efficient MTU mechanics and actually increase active muscle mechanical work. This study tested the effects of elastic parallel assistance on MTU mechanics. Participants hopped with and without spring-loaded ankle exoskeletons that assisted plantar flexion. An inverse dynamics analysis, combined with in vivo ultrasound imaging of soleus fascicles and surface electromyography, was used to determine muscle-tendon mechanics and activations. Whole body net metabolic power was obtained from indirect calorimetry. When hopping with spring-loaded exoskeletons, soleus activation was reduced (30-70%) and so was the magnitude of soleus force (peak force reduced by 30%) and the average rate of soleus force generation (by 50%). Although forces were lower, average positive fascicle power remained unchanged, owing to increased fascicle excursion (+4-5 mm). Net metabolic power was reduced with exoskeleton assistance (19%). These findings highlighted that parallel assistance to a muscle with appreciable series elasticity may have some negative consequences, and that the metabolic cost associated with generating force may be more pronounced than the cost of doing work for these muscles.This study was in part funded by US Israel Binational Science Foundation Start Up Grant 2011152 awarded to G. S. Sawicki

    Individual limb mechanical analysis of gait following stroke

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe step-to-step transition of walking requires significant mechanical and metabolic energy to redirect the center of mass. Inter-limb mechanical asymmetries during the step-to-step transition may increase overall energy demands and require compensation during single-support. The purpose of this study was to compare individual limb mechanical gait asymmetries during the step-to-step transitions, single-support and over a complete stride between two groups of individuals following stroke stratified by gait speed (≥0.8 m/s or <0.8 m/s). Twenty-six individuals with chronic stroke walked on an instrumented treadmill to collect ground reaction force data. Using the individual limbs method, mechanical power produced on the center of mass was calculated during the trailing double-support, leading double-support, and single-support phases of a stride, as well as over a complete stride. Robust inter-limb asymmetries in mechanical power existed during walking after stroke; for both groups, the non-paretic limb produced significantly more positive net mechanical power than the paretic limb during all phases of a stride and over a complete stride. Interestingly, no differences in inter-limb mechanical power asymmetry were noted between groups based on walking speed, during any phase or over a complete stride. Paretic propulsion, however, was different between speed-based groups. The fact that paretic propulsion (calculated from anterior-posterior forces) is different between groups, but our measure of mechanical work (calculated from all three directions) is not, suggests that limb power output may be dominated by vertical components, which are required for upright support.This work was supported by the Foundation for Physical Therapy, Incorporated Geriatric Endowment Fund, the American Heart Association (09BGIA2210015), and the Joint University of North Carolina at Chapel Hill and North Carolina State University Rehabilitation Engineering Center seed grant

    Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: from individual limbs to lower limb joints

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordBACKGROUND: Previous reports of the mechanics and energetics of post-stroke hemiparetic walking have either not combined estimates of mechanical and metabolic energy or computed external mechanical work based on the limited combined limbs method. Here we present a comparison of the mechanics and energetics of hemiparetic and unimpaired walking at a matched speed. METHODS: Mechanical work done on the body centre of mass (COM) was computed by the individual limbs method and work done at individual leg joints was computed with an inverse dynamics analysis. Both estimates were converted to average powers and related to simultaneous estimates of net metabolic power, determined via indirect calorimetry. Efficiency of positive work was calculated as the ratio of average positive mechanical power [Formula: see text] to net metabolic power. RESULTS: Total [Formula: see text] was 20% greater for the hemiparetic group (H) than for the unimpaired control group (C) (0.49 vs. 0.41 W · kg(-1)). The greater [Formula: see text] was partly attributed to the paretic limb of hemiparetic walkers not providing appropriately timed push-off [Formula: see text] in the step-to-step transition. This led to compensatory non-paretic limb hip and knee [Formula: see text] which resulted in greater total mechanical work. Efficiency of positive work was not different between H and C. CONCLUSIONS: Increased work, not decreased efficiency, explains the greater metabolic cost of hemiparetic walking post-stroke. Our results highlighted the need to target improving paretic ankle push-off via therapy or assistive technology in order to reduce the metabolic cost of hemiparetic walking.This research was funded by the following grants: NC TraCs Institute grant number 50KR41018; National Institutes of Health award #R24 HD 050821 (through the Rehabilitation Institute of Chicago); and Eunice Kennedy Shriver National Institute of Child Health & Development of the National Institutes of Health award #R21 HD072588 all to G.S.S

    Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this record. Data Availability: All relevant data are available from Dryad (DOI: 10.5061/dryad.ns1rn8pqc).Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a ‘roadmap’ for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s-1) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s-1) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle’s contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade (p < 0.0001) while the hip’s contribution increased from 27% to 52% (p < 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47–55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase (i.e., regenerative braking).United States-Israel Binational Science FoundationU.S. Army Natick Soldier Research, Development and Engineering Cente

    Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping

    Get PDF
    This is the final version. Available from Company of Biologists via the DOI in this record.Experiments have shown that elastic ankle exoskeletons can be used to reduce ankle joint and plantar-flexor muscle loading when hopping in place and, in turn, reduce metabolic energy consumption. However, recent experimental work has shown that such exoskeletons cause less favourable soleus (SO) muscle-tendon mechanics than is observed during normal hopping, which might limit the capacity of the exoskeleton to reduce energy consumption. To directly link plantar-flexor mechanics and energy consumption when hopping in exoskeletons, we used a musculoskeletal model of the human leg and a model of muscle energetics in simulations of muscle-tendon dynamics during hopping with and without elastic ankle exoskeletons. Simulations were driven by experimental electromyograms, joint kinematics and exoskeleton torque taken from previously published data. The data were from seven males who hopped at 2.5 Hz with and without elastic ankle exoskeletons. The energetics model showed that the total rate of metabolic energy consumption by ankle muscles was not significantly reduced by an ankle exoskeleton. This was despite large reductions in plantar-flexor force production (40-50%). The lack of larger metabolic reductions with exoskeletons was attributed to increases in plantar-flexor muscle fibre velocities and a shift to less favourable muscle fibre lengths during active force production. This limited the capacity for plantar-flexors to reduce activation and energy consumption when hopping with exoskeleton assistance.This work was supported by the Visiting Scholars Program of The National Center for Simulation in Rehabilitation Research (NCSRR). The NCSRR is a National Center for Medical Rehabilitation Research supported by National Institutes of Health (NIH) research infrastructure grant [R24 HD065690]. This study was in part funded by US Israel Binational Science Foundation Start Up Grant [2011152] awarded to G.S.S

    An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5 years (KLIMB).

    Get PDF
    BACKGROUND: KIWI (NCT01705145) was a 24-week, single-arm, pharmacokinetics, safety, and efficacy study of ivacaftor in children aged 2 to 5 years with cystic fibrosis (CF) and a CFTR gating mutation. Here, we report the results of KLIMB (NCT01946412), an 84-week, open-label extension of KIWI. METHODS: Children received age- and weight-based ivacaftor dosages for 84 weeks. The primary outcome was safety. Other outcomes included sweat chloride, growth parameters, and measures of pancreatic function. RESULTS: All 33 children who completed KIWI enrolled in KLIMB; 28 completed 84 weeks of treatment. Most adverse events were consistent with those reported during KIWI. Ten (30%) children had transaminase elevations >3 × upper limit of normal (ULN), leading to 1 discontinuation in a child with alanine aminotransferase >8 × ULN. Improvements in sweat chloride, weight, and body mass index z scores and fecal elastase-1 observed during KIWI were maintained during KLIMB; there was no further improvement in these parameters. CONCLUSIONS: Ivacaftor was generally well tolerated for up to 108 weeks in children aged 2 to 5 years with CF and a gating mutation, with safety consistent with the KIWI study. Improvements in sweat chloride and growth parameters during the initial 24 weeks of treatment were maintained for up to an additional 84 weeks of treatment. Prevalence of raised transaminases remained stable and did not increase with duration of exposure during the open-label extension

    A mHealth patient passport for adult Cystic Fibrosis patients

    Get PDF
    Life expectancy for some Cystic Fibrosis (CF) patients is rising and new complications and procedures are predicted. Subsequently there is need for education and management interventions that can benefit CF adults. This paper proposes a CF patient passport to record basic medical information through a smartphone application (app), giving the patient access to their own data. It is anticipated that such an app will be beneficial to patients when travelling abroad and between CF centres. This app is designed by a CF multidisciplinary team to be a lightweight reflection of a current patient file. The passport app is created using PhoneGap so that is can be deployed for both Android and iOS devices. The app is introduced to seven participants as part of a stress test. The app is found to be usable and accessible. The app is now being prepared for a pilot study with adult CF patients

    Adherence to treatment in children and adolescents with cystic fibrosis:a cross-sectional, multi-method study investigating the influence of beliefs about treatment and parental depressive symptoms

    Get PDF
    Background: Adherence to treatment is often reported to be low in children with cystic fibrosis. Adherence in cystic fibrosis is an important research area and more research is needed to better understand family barriers to adherence in order for clinicians to provide appropriate intervention. The aim of this study was to evaluate adherence to enzyme supplements, vitamins and chest physiotherapy in children with cystic fibrosis and to determine if any modifiable risk factors are associated with adherence. Methods: A sample of 100 children (≤18 years) with cystic fibrosis (44 male; median [range] 10.1 [0.2-18.6] years) and their parents were recruited to the study from the Northern Ireland Paediatric Cystic Fibrosis Centre. Adherence to enzyme supplements, vitamins and chest physiotherapy was assessed using a multi-method approach including; Medication Adherence Report Scale, pharmacy prescription refill data and general practitioner prescription issue data. Beliefs about treatments were assessed using refined versions of the Beliefs about Medicines Questionnaire-specific. Parental depressive symptoms were assessed using the Center for Epidemiologic Studies Depression Scale. Results: Using the multi-method approach 72% of children were classified as low-adherers to enzyme supplements, 59% low-adherers to vitamins and 49% low-adherers to chest physiotherapy. Variations in adherence were observed between measurement methods, treatments and respondents. Parental necessity beliefs and child age were significant independent predictors of child adherence to enzyme supplements and chest physiotherapy, but parental depressive symptoms were not found to be predictive of adherence. Conclusions: Child age and parental beliefs about treatments should be taken into account by clinicians when addressing adherence at routine clinic appointments. Low adherence is more likely to occur in older children, whereas, better adherence to cystic fibrosis therapies is more likely in children whose parents strongly believe the treatments are necessary. The necessity of treatments should be reinforced regularly to both parents and children
    • …
    corecore